miércoles, 15 de febrero de 2012

History of Stem Cell Research

Original Article: Explore Stem Cells 
 
Stem cells have an interesting history that has been somewhat tainted with debate and controversy. In the mid 1800s it was discovered that cells were basically the building blocks of life and that some cells had the ability to produce other cells.
Attempts were made to fertilise mammalian eggs outside of the human body and in the early 1900s, it was discovered that some cells had the ability to generate blood cells.
In 1968, the first bone marrow transplant was performed to successfully treat two siblings with severe combined immunodeficiency. Other key events in stem cell research include:20px break
  • 1978: Stem cells were discovered in human cord blood
  • 1981: First in vitro stem cell line developed from mice
  • 1988: Embryonic stem cell lines created from a hamster
  • 1995: First embryonic stem cell line derived from a primate
  • 1997: Cloned lamb from stem cells
  • 1997: Leukaemia origin found as haematopoietic stem cell, indicating possible proof of cancer stem cells
In 1998, Thompson, from the University of Wisconsin, isolated cells from the inner cell mass of early embryos and developed the first embryonic stem cell lines. During that exact same year, Gearhart, from Johns Hopkins University, derived germ cells from cells in foetal gonad tissue; pluripotent stem cell lines were developed from both sources. Then, in 1999 and 2000, scientists discovered that manipulating adult mouse tissues could produce different cell types. This meant that cells from bone marrow could produce nerve or liver cells and cells in the brain could also yield other cell types. These discoveries were exciting for the field of stem cell research, with the promise of greater scientific control over stem cell differentiation and proliferation. 

Bogus Findings

The unfortunate reality of this enormous breadth of information, however, is that scientists may fabricate studies and findings. This was the case in 2004 to 2005, when Hwang Woo-Suk, a Korean researcher, claimed to have produced human embryonic stem cell lines from unfertilised human eggs. The lines were eventually shown to be completely false and therefore fabricated, but the huge international scandal left the public doubtful and mistrusting of the scientific community.
More recently, in 2005, scientists at Kingston University in England were purported to have found another category of stem cells. These were named cord blood embryonic-like stem cells, which originate in umbilical cord blood. It is suggested that these stem cells have the ability to differentiate into more cell types than adult stem cells, opening up greater possibilities for cell-based therapies. Then, in early 2007, researchers led by Dr. Anthony Atala claimed that a new type of stem cell had been isolated in amniotic fluid. This finding is particularly important because these stem cells could prove to be a viable alternative to the controversial use of embryonic stem cells.
Over the last few years, national policies and debate amongst the public as well as religious groups, government officials and scientists have led to various laws and procedures regarding stem cell harvesting, development and treatment for research or disease purposes. The goals of such policies are to safeguard the public from unethical stem cell research and use while still supporting new advancements in the field. 

Today

Stem cell research has now progressed dramatically and there are countless research studies published each year in scientific journals. Adult stem cells are already being used to treat many conditions such as heart disease and leukaemia. Researchers still have a long way to go before they completely control the regulation of stem cells. The potential is overwhelmingly positive and with continued support and research, scientists will ideally be able to harness the full power of stem cells to treat diseases that you or a loved one may suffer from one day.

miércoles, 8 de febrero de 2012

Secrets of ailments unlocked by stem cells from skin samples

Original article: The New Zeland Herald

By Robin McKie

The news that Edinburgh scientists had created the world's first cloned mammal, Dolly the sheep, at the university's Roslin Institute made headlines around the world 16 years ago.
Her birth raised hopes of the creation of a new generation of medicines - with a host of these breakthroughs occurring at laboratories in the university over the next decade.
And now one of the most spectacular has taken place at Edinburgh's Centre for Regenerative Medicine, where scientists have continued to develop the technology used to make Dolly. In a series of experiments, they have created brain tissue from patients suffering from schizophrenia, bipolar depression and other mental illnesses.
The work offers spectacular rewards for doctors. From a scrap of skin taken from a patient, they can make neurones genetically identical to those in that person's brain. These brain cells, grown in the laboratory, can then be studied to reveal the neurological secrets of their condition.

"A patient's neurones can tell us a great deal about the psychological conditions that affect them, but you cannot stick a needle in someone's brain and take out its cells," said Professor Charles ffrench-Constant, the centre's director.
"However, we have found a way round that. We can take a skin sample, make stem cells from it and then direct these stem cells to grow into brain cells. Essentially, we are turning a person's skin cells into brain. "We are making cells that were previously inaccessible. And we could do that in future for the liver, the heart and other organs on which it is very difficult to carry out biopsies."
The scientists are concentrating on a range of neurological conditions, including multiple sclerosis, Parkinson's disease and motor neurone disease. In addition, work is being done on schizophrenia and bipolar depression, two debilitating ailments that are triggered by malfunctions in brain activity.
This latter project is directed by Professor Andrew McIntosh of the Royal Edinburgh Hospital, who is working in collaboration with the regenerative medicine centre. "We are making different types of brain cells out of skin samples from people with schizophrenia and bipolar depression," he said. "Once we have assembled these, we look at standard psychological medicines, such as lithium, to see how they affect these cells in the laboratory. After that, we can start to screen new medicines. Our lines of brain cells would become testing platforms for new drugs. We should be able to start that work in a couple of years."
In the past, scientists have studied brain tissue from people with conditions such as schizophrenia, but could only do so after an autopsy.
"It is very difficult to get primary tissue to study until after a patient has died," added McIntosh.
"Even then, that tissue is affected by whatever killed them and by the impact of the medication they had been taking for their condition, possibly for several decades. So having access to living brain cells is a significant development for the creation of drugs for these conditions."
In addition, ffrench-Constant is planning experiments to create brain cells from patients suffering from multiple sclerosis, a disease that occurs when a person's immune system turns on his or her own nerve cells and starts destroying the myelin sheaths that protect the fibres that it uses to communicate with other nerve cells. The condition induces severe debilitation in many cases.
"The problem with MS is that we cannot predict how patients will progress," said ffrench-Constant. "In some, it progresses rapidly. In others, the damage to the myelin is repaired and they can live quite happily for many years. If we can find out the roots of the difference, we may be able to help patients."
The brain cells that make myelin and wrap it around the fibres of nerve cells are known as oligodendrocytes. "We will take skin samples from MS patients whose condition has progressed quickly and others in whom it is not changing very much.
"Then we will make oligodendrocytes from those samples and see if there is an intrinsic difference between the two sets of patients. In other words, we will see if there is an underlying difference in people's myelin-making cells that explains, when they get MS, why some manage to repair damage to their brain cells and others do not."
Once that mechanism is revealed, the route to developing a new generation of MS drugs could be opened up, he added. "It is only a hypothesis, but it is a very attractive one," said ffrench-Constant.
The technology involved in this work is a direct offshoot from the science involved in making Dolly the sheep. Dolly showed that adult cells in animals were more flexible than previously thought.

By Robin McKie

Original article: The New Zeland Herald